Precise large deviation for products of random matrices

Hui Xiao^{*1}, Ion Grama, and Quansheng Liu

¹LMBA UMR CNRS 6205, Université de Bretagne-Sud – Quansheng Liu : IonGrama – France

Résumé

In the case of a sum S_n of independent random variables, Bahadur and Rao and Petrov have established exact large deviation expansions for the probability $P(S_n geq nq)$ as ngoes tp $\inf_{i=1}^{i=1} e_i = e_i e_i$. These milestone results have numerous applications in a variety of problems in pure and applied probability. Consider the product $G_{n}:=g_{n}:=g_{1},\ldots,g_{1}$, where $(g_{n})_{n} geq 1$ is a sequence of i.i.d. d times d real random matrices. The goal is to prove equivalent expansions for the norm $G_n - S$ and for the entries $G_n^{(i,j)}$. The asymptotics are expressed in terms of the eigenfunctions and invariant measures of the transfer operators related to the Markov chain representation of $\log_{n} - G_n - S$ and $\log_{n} (i,j)$. In order to prove these results we develop the spectral gap theory for the scalar product of positive matrices. This is a joint work with Ion Grama and Quansheng Liu.

^{*}Intervenant